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The current study was performed to check the sub-lethal effects of endosulfan+chlorpyrifos mixture on 
biochemical parameters viz. peroxidase (POx), superoxide dismutase (SOD), catalase (CAT) and Phase-II 
glutathione (GST) in hepatic, neural, nephron, bronchial, cardiac and muscle tissue of Catla catla and Labeo 
rohita. The geno-toxic effects were studied in terms of DNA damage and nuclear abnormalities in the RBCs 
of both fish species. The fish was exposed to the mixture for 60 days and the fish sample was taken after the 
15-day period. The negative control (NC) fish were kept in water having no insecticides. The results showed 
that during the first two samplings, an increase in activities of POx, SOD, and GST in all tissues of both fishes 
exposed to the insecticides mixture was noted as compared to the control. The trend of SOD level in organs 
of both fish species was noted as hepatic>neural>nephron>bronchial>cardiac>muscle tissue. The POx and 
GST levels in L. rohita and C. catla were observed as: hepatic>neural>bronchial>nephrotic>cardiac>muscle 
tissues. CAT activity was increased in the bronchial, hepatic, and nephrotic tissues of both fishes while it 
was reduced in cardiac, neural, and muscle tissues. The result of DNA damage showed that GDI and DN 
were higher during the first 15 days after that damage was lower. The L. rohita showed higher MN and NAs 
during the first 15 days of exposure after that damage was lower. However, C. catla showed an increase in 
the formation of MN and NAs throughout the exposure period.

INTRODUCTION

In the last few years, the application of agrochemicals 
like insecticides has been increased in the agricultural

 
*      Corresponding author: dr.humanaz98@gmail.com, 
tanvirahmeduaf@gmail.com
0030-9923/2022/0001-0001 $ 9.00/0

  
Copyright 2022 by the authors. Licensee Zoological Society of 
Pakistan. 
This article is an open access  article distributed under the terms 
and conditions of the Creative Commons Attribution (CC BY) 
license (https://creativecommons.org/licenses/by/4.0/).

sector for improving the yield and quality of the crops 
(Doruchowski et al., 2017) with less work and time but 
this has negative consequences for the environment (Ullah, 
2015). This practice has increased and becomes a necessary 
evil, especially in developing countries and those countries 
where agriculture is expected to be the backbone of the 
economy (Doruchowski et al., 2017). After application, 
these pesticides ultimately enter into the water bodies 
in significant quantities through contaminated water,
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agricultural and urban run-off, bottom sediments, waste, 
atmospheric fall-out by rain and municipal water treatment, 
etc. (Kumari, 2020). Extensive use of these chemicals 
resulted in water pollution which poses a serious threat to 
freshwater biodiversity due to their ability to bioaccumulate 
and induce toxicity (Cui et al., 2015). Now, the assessment 
of toxicity associated with pesticides and their harmful 
effects on non-target aquatic animals has been a matter of 
worldwide concern (Matozzo et al., 2018).

The most commonly used insecticides in agriculture 
are organochlorine and organophosphate (Ullah et al., 
2015, 2016). The metabolites of these insecticides finally 
enter the water bodies (Das and Mukherjee, 2003). 
Among the organophosphate, a widely used insecticide is 
chlorpyrifos with a long half-life and high stability (Wu 
et al., 2016). Exposure to pesticides to aquatic organisms 
especially fish led to toxic impacts, such as alteration in 
the acetylcholinesterase activity of Cyprinus carpio and 
behavior of Labeo rohita as well as impairment in Gobio 
cypris rarus embryos and larvae development (Wang et al., 
2015; Mustafa et al., 2014; Zhu et al., 2014). Endosulfan 
belongs to organochlorine insecticide also broadly used 
throughout the world and can affect aquatic life through its 
bio-magnification and disturb homeostasis and metabolic 
activities and also induce damage to DNA (Indirabai et al., 
2010; Adhikari et al., 2006; Ullah, 2015). It also induced 
the formation of reactive oxygen species (ROS) (Ghaffar 
et al., 2015) causing oxidative stress in aquatic organisms, 
especially fish, by modulation of antioxidant systems 
in fish (Shao et al., 2012). The organisms kept balance 
in the formation and elimination of ROS with the help 
of an antioxidant defense system including superoxide 
dismutase (SOD), peroxidase (POx), catalase (CAT), 
and glutathione-S-transferase (GST) (Kilili et al., 2004; 
Valavanidis et al., 2006). Against oxidative stress, the first 
line of defense is SOD which transfers the free oxygen 
radicals into hydrogen peroxide and molecular oxygen, 
that is further converted into H2O and O2 by POx and CAT 
enzymes (Zheng et al., 2016; Cheng et al., 2018). GST is a 
Phase-II enzyme present almost in all species and plays a 
role in the detoxification of toxicants (Hayes et al., 2005). 

The unnecessary production of ROS may also cause 
DNA damage like oxidation and breakage of DNA strands 
(Oruc et al., 2014). The toxicological and safety effects 
evaluation of pesticides is necessary due to their deleterious 
effects such as cancer, chromosomal aberrations, 
gonadotoxicity, infertility, and fetal malformations (Ahmad 
et al., 2012). The alkaline single-cell gel electrophoresis 
assay also famous as the comet assay identify the DNA 
damage in term of alkali-labile sites, strand breaks, and 
delayed-repair sites (Ng and Romano, 2013). The other 
most promising test is micronucleus (MN) which is 

associated with nuclear abnormalities (NAs) and has 
also been used in the field of ecotoxicology to detect 
abnormalities at the chromosomal level (Bolognesi and 
Hayashi, 2011). Both these simple tests are widely applied 
due to their high sensitivity and statistical power to assess 
the genotoxic impacts. 

Another major problem in environmental risk 
evaluation is that aquatic bodies contain different 
insecticides in a mixture form rather than a single chemical 
(Schreiner et al., 2016). Fish are good specimen which 
is not only used to assess the quality of aquatic system 
but their physiological systems are also used as valuable 
biomarkers to detect pollution. In this context, the present 
study provides more information about the effects of 
organophosphate and organochlorine pesticides on the 
enzymes and DNA functioning in non-target organisms 
the fish.

MATERIALS AND METHODS

Experimental specimens and sub-lethal trail
The two fish species, Catla catla and Labeo rohita 

(90-day old) from the Cyprinidae family were got from 
the fish seed Hatchery, Faisalabad. Both fishes were, live 
transferred to the Toxicology laboratory at the Fisheries 
Research Farm of UAF. Fishes were acclimatized to the 
laboratory environment by keeping them in the rectangular 
cemented tanks for 14 weeks. The experiment was 
conducted with 20 specimens of both species with equal 
weight and size, separately, kept in a 100-L aquarium 
facilitated with an oxygen pump. The control fish were 
kept in water having no insecticide. 

Fishes were kept in 1/3rd of LC50 of 
endosulfan+chlorpyrifos mixture, separately, for 60 days. 
The LC50 (96 h) concentration of the mixture for L. rohita 
and C. catla was calculated as 1.95±0.02 and 1.35±0.01μgL-

1, respectively (Naz et al., 2019a, b). The sampling of fish 
(n=5) were done after 15, 30, 45 and 60 days interval 
labeled as D1, D2, D3, and D4, respectively. In the sub-
lethal trial, no mortality was observed. During the trial, 
water pH (7), temperature (28ᵒC), and total hardness (220 
mgL-1) were also kept constant. Fish of positive control 
(PC) were injected with a dose of cyclophosphamide at 20 
μgg-1 of body weight to study the blood genotoxic markers.

 
Preparation of insecticides solutions

The clean water having no insecticide was used for 
control. The stock-I solution was made by mixing 1g of 
technical grade endosulfan (97% purity) and chlorpyrifos 
(98% purity), separately, in 95% analytical grade methanol 
(100ml). The stock-II solution, E+C mixture of insecticide 
of required ratio (1:1) were made in deionized water.

H. Naz et al.



3                                                                                        

Onlin
e F

irs
t A

rtic
le

Tissue enzymes markers
After the sub-lethal trial, activities of enzymes viz. 

superoxide dismutase SOD, CAT and POx, and phase-II 
GST were assessed in cardiac, bronchial, muscle, nephritic, 
neural and hepatic tissues of both fishes. The homogenates 
of tissues were ready according to the procedure given by 
Zia et al. (2007). Giannopolitis and Ries (1977) protocol 
was used to analyze the SOD activity. Chance and Mehaly 
(1977) procedure was adopted to quantify the CAT and 
POx activities. Mannervik (1985) method was followed to 
calculate the GST activity.

 
Blood genotoxic markers

Comet/ SCGE assay
The blood was collected from the caudal vein of the 

fish and treated according to Singh et al. (1988). According 
to Jose et al. (2011) the damaged DNA was evaluated. 
The length of the tail was used to classify five types of 
damaged DNA known as comets. The following formula 
was applied to quantify the DNA damage:

Micronucleus test
The slides for micronuclei were prepared according 

to Barsiene et al. (2004) method. Fenech et al. (2003) 
procedure was followed to score the micronuclei and other 
nuclear anomalies in the blood of fishes. To compute MN 
frequency, the following formula was used:

Data analyses 
The obtained data was statistically analyzed through 

the 8.1 version of statistics software. The ANOVA (a 
linear model) under CRD was applied to data to see the 
differences among tissues for enzyme activities followed 
by the student Newman-Keul test for mean comparison. 
The data obtained from the comet assay and MN test was 
analyzed through a non-parametric Mann-Whitney U-test. 
The significance level was set as p>0.05.

 
RESULTS AND DISCUSSION

Tissue enzymes markers
The results of this study showed that E+C-exposed 

fish species showed significant change in antioxidant 
enzymes viz. SOD, POD, GST and CAT as compared to 
control group. The change in antioxidant enzymeactivities 
may be a response againt oxidative stress due to free 

radicals. During the first two samplings (D1 and D2) 
an increase in activity of SOD, POx, and GST in all 
tissues of both fishes exposed to the E+C mixture 
was noted as compared to the control. However, a 
decline was noted in D3 and D4 sampling. The trend of 
SOD level in both fish species was noted as: hepatic> 
neural>nephron>bronchial>cardiac>muscle tissue. The 
POx and GST level in L. rohita and C. catla was observed 
as: hepatic>neural>bronchial>nephrotic>cardiac>muscle 
tissues. In the present study, CAT activity was initially (D1 
and D2 sampling) increased in the bronchial, hepatic, and 
nephrotic tissues of both fishes. While it was decreased 
in neural, cardiac, and muscle tissues of E+C mixture 
exposed fishes throughout the experiment (Fig. 1). Similar 
findings were observed by Naz et al. (2022) for Cirrhinus 
mrigala when exposed to three different binary mixtures of 
insecticides viz. endosulfan, chlorpyrifos and bifenthrin. 
According to Webb et al. (2005) changes in enzyme 
activity, as well as a reduction, reveal that contaminants 
have shown reaction inside the body of fish. Several 
parameters, including species of fish toxicant dose, and 
period of exposure influence the duration and amplitude of 
these reactions (Piazza et al., 2015). Several authors had 
reported specie and dose-specific responses of enzymes, 
due to persistent organic pollutants (either increase or 
decrease in enzyme activity) (Lu et al., 2013; Koenig 
et al., 2012). Antioxidant enzymes work in the defense 
mechanism of the fish body. These act to defend fish 
against oxidative stress while a decrease in their activity 
disrupt the redox status of the cell. Reactive oxygen species 
(ROS) are induced by POP exposure to cells. Enzymes get 
back to normal activity when ROS got removed from the 
fish bodies (Stara et al., 2012; Ural, 2013). Various organs 
are under the effect by pesticide (Limon-Pacheco and 
Gonsebatt, 2009) like the liver, heart, stomach, intestine, 
spleen, kidney, gallbladder, muscle, swim-bladder, brain, 
operculum, gills, vertebra and gonads; however, all these 
are not commonly used but they also could serve as 
valuable evidence in terms of ecotoxicology (Jovicic et 
al., 2014).

The metabolites of endosulfan are more persistent 
and toxic as compared to the original form (Awasthi et 
al., 2000). According to Salvo et al. (2012), activity of 
antioxidant enzymes (SOD, CAT, GST, and GPx) in the 
liver of Cyprinus carpio were considerably altered by sub-
lethal endosulfan exposure. The activities of SOD and 
GST in cardiac tissues were dramatically increased after 
exposure to endosulfan (Jalili et al., 2007).

Organophosphate pesticides (OP) use two 
pathways to induce ROS. The first choice is oxidation-
reduction cycle, which is catalyzed by cytochrome P 
450S. The chemical link –P= O, which was changed 

Toxicity of Pesticides to Fish 3
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Fig. 1. Activity of antioxidant enzymes in different tissues of C. catla and L. rohita.
Samples of tissues were taken after 15 days (D1), 30 days (D2), 45 days (D3) and 60 days (D4).

H. Naz et al.
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from the –P=S or was previously present in organophosphate 
insecticides, may easily gain an electron and transfer 
into the oxygen molecule to form superoxide anion, 
which can subsequently be produced other ROS such as 
hydroxyl ion (Kovacic, 2003). Secondly, these ROS are 
limited by antioxidant enzyme otherwise, these causes an 
excessive accumulation of ROS. Plasma membrane and 
organelle enzyme activities as well as nerve conductance 
are interrupted by OP (Karaoz et al., 2002). Similarly, 
many researchers reported the fluctuation in GST, POx, 
SOD, and CAT activities in different fish species exposed 
to insecticides (Wang et al., 2009; Abdullah et al., 2018; 
Ozok, 2020; Deb and Das, 2021; Naz et al., 2021). The 
chlorpyrifos+endosulfan mixture induced fluctuations in 
GST, SOD, CAT, and POx activities in various organs 
(liver, brain, gills, heart, kidney, and muscle) of fish, 
Labeo rohita (Naz et al., 2019a) and Catla catla (Naz et 
al., 2021). According to Usman et al. (2020) decline in 
CAT activity in various tissues depends on the type of 
toxicants and exposure duration. Siddique et al. (2020, 
2021) observed an initial rise in GST activity of L. rohita 
up to 28 days after that it decreased up to 56 days. 

 

 

 

Fig. 2. Micronuclei and nuclear anomalies in RBC of C. 
catla and L. rohita.

Blood genotoxicity markers
Results showed that L. rohita had higher MN and NAs 

in RBCs during the first sampling (D1) of exposure to the 
E+C mixture after that damage was lower throughout the 
experiment. However, C. catla showed an increase in the 
formation of MN and NAs in RBCs throughout the exposure 
period. The result of geno-toxicity showed that GDI and DN 
were higher during the first sampling (D1) after that damage 
was lower (Figs. 2, 3). The fish, Cirrhina mrigala showed 
exposure depended on changes in DNA damage, MN, and 
NAs during chronic exposure to three different mixtures 
of insecticides (Naz et al., 2022). In aquatic environments, 
the SCGE/CA is a frequently applied method for detecting 
geno-toxicity (Frenzilli et al., 2009). This assay offers the 
benefit of identifying individual cells with damaged DNA 
(Buschini et al., 2004; Lee and Steinert, 2003). According 
to Lee and Steinert (2003), interactions between DNA 
molecules and contaminants can appear in a variety of 
ways, including DNA damage caused by ROS, DNA 
repair inhibition, compound action directly on DNA, and 
metabolites’ interaction with DNA. ROS has been found 
to cause cellular and DNA damage at levels above normal 
(Cadet et al., 2003).

  

  

  

Fig. 3. Percentage of comet types, damaged nuclei and 
genetic damage index in RBC of C. catla and L. rohita.
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With the oxidative potential of hydroxyl radical and 
indiscriminate reactivity with cellular constituents like 
lipids in cell membranes, DNA, and enzyme proteins, 
the hydroxyl radical is the most significant free radical of 
biological and toxicological importance, with a lifetime 
of a few nanoseconds (Jackson and Loeb, 2001). Another 
method of DNA damage caused by pesticide exposure is the 
presence of heavy metals like chromium, iron, cadmium, 
nickel, copper, zinc, lead , and manganese in these pesticides 
(Hayat et al., 2007). Through Fenton-like processes, these 
metal cations affect the polyanionic DNA (Ercal et al., 
2001). Fenech and Ferguson (2001) reported the ability 
of live organisms to build and control particular enzyme 
systems for restoring DNA damage. Two electrophilic 
groups, alkyl and phosphoryl groups that are produced 
by the metabolism of organophosphate are ideal targets 
for nucleophilic attack. Through the phosphorylation 
process, this could interact with DNA (Ali et al., 2009). 
Several researchers successfully applied to quantify the 
insecticides induced DNA damage in terms of damaged 
nuclei and GDI in various fish species viz., Catla catla 
(Naz et al., 2019b), Labeo rohita (Nataraj et al., 2020), 
Cyprinus carpio (Hemalatha et al., 2020), silver carp 
(Ullah et al., 2019) and Cyprinus carpio (Ambreen and 
Javed, 2019). 

The toxicity of aneugenic and clastogenic aquatic 
contaminants is evaluated by the use of MN frequency 
in fish erythrocytes (Udroiu, 2006; Ferraro et al., 
2004). Tubulin polymerization failure may be linked 
to nuclear changes such as BL and LB (Vardavas et al., 
2016). Furthermore, NAs are produced as a result of 
complications in the development of mitotic fuse due 
to the chemical’s aneugenic activity (de-Campos Ventura 
et al., 2008). As in previous research, the signification 
formation of NAs frequencies in fishes was noted after 
exposure to QP-containing pesticides (Sadiqul et al., 
2016), carbosulfan, glyphosate, atrazine (Nwani et al., 
2014) and formalin (Mert et al., 2015). Similarly, MN and 
NAs formation in erythrocytes of insecticides exposed fish 
species by using micronucleus test were also recorded by 
many authors (Mitkovska and Chassovnikarvo, 2020; Naz 
et al., 2021; Davico et al., 2020).

CONCLUSION

The findings of the current study suggest that the 
fish enzyme activities, nuclear anomalies, and comet 
assay are valuable potent diagnostic tools for monitoring 
insecticide toxicity in the aquatic environments. However, 
this study suggests that extensive use of insecticides 
should be minimized or applied under strict environmental 
regulations. Farmers should adopt another strategy like 

biological control to kill pests instead of insecticides.
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